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Abstract - In this work, the nonlinear analysis of a _ locked ranges and settling times (when the channel is 
switched) will be studied. fractional phase-locked loop with 2.4 GHz output frequency 

is presented. The nonlinear simulation uses a realistic 
description for the phase-frequency detector and the loop 
filter. The phase-error compensation for beat-note spurious 
reduction is analyzed, predicting the attenuation values for 
practical and theoretically improved compensation signals. 
The influence of different loop parameters on the beat note 
spurious is also studied, through the application of the 
Poincarb map. This technique has also enabled the 
determination of the phase-locked ranges, delimited by 
chaotic phenomena. The phase-locked loop has been 
manufactured and experimentally characterized. 

I. INTRODUCTION 

In a fractional synthesizer [l-4], the output frequency is 
a fractional multiple of the reference frequency, i. e., 
fvco=f@+KiF), with K<F. The narrow channel spacing is 
given by Af=fJF, so the reference frequency can be F 
times higher than in a conventional integer synthesizer. 
This enables a wider loop-filter bandwidth and, thus, fast 
switching times. The decrease of the division ratio also 
reduces the output phase-noise. The overflow of an 
accumulator [l-3] is used to periodically vary the division 
order between N and N+l . This instantaneous modulation 
of the division ratio creates spurious tones at f,/F (beat 
note) in the output spectrum. The beat note can, however, 
be corrected through phase-interpolation, using a digital- 
to-analog converter. The contents of the accumulator are 
used to create a compensation signal, which is summed 
into the loop filter. Other approaches for beat note 
reduction include the use of sigma-delta modulators [4]. 

In the bibliography, several works have been devoted to 
the study and design of fractional synthesizers, using an 
phase interpolation. In [l] analytical expressions are 
obtained for the phase error and for the spurious tones, 
after introduction of the compensation signal. In [2], a 
nonlinear simulation is presented, using normalized units. 
The aim here is to carry out a realistic analysis of the 
synthesizer global behavior, with accurate models of the 
digital phase detector and the loop filter. The optimum 
compensation signal will be mathematically determined 
and compared with existing techniques. The influence of 
different loop parameters on the spurious content, phase- 

II. NONLINEAR ANALYSIS OF THE FRACTIONAL 

PHASE-LOCKED LOOP 

The fractional PLL analyzed here has 2.4 GHz output 
frequency. The frequency range of the voltage-controlled 
oscillator (VCO) is 2-3 GHz. For the nonlinear simulation, 
the truth table of the digital phase detector (PD) is taken 
into account. For the analysis, the fractional modulus F=5 
will be considered. 

A Phase error and compensation current 

For a fractional PLL with division ratio N+IUF, there are 
K divisions by N+l and F-K divisions by N in F cycles of 
the reference signal. The division order can be modulated 
using the output of an F-modulus accumulator. The 
accumulator changes its value a,(n) (with n = 1 to F) at 
each cycle of the reference T,=l/f,, returning to its initial 
value after F cycles, i.e., with the period F/f,. The 
instantaneous variation of the division order (N or N+l) 
gives rise, at the phase-detector input, to a phase error 
q(n), whose value depends on the accumulator content 
acb). 
When the division order is not modulated (integer divider), 
the phase-locked solution of the PLL is given by a 
constant phase error &, at the phase-detector input. For a 
filter pole located at the origin, this phase error will either 
be I$,, = 0 or I&, = II, the actual value depending on the loop 
parameters. If  no filter poles are located at the origin, the 
phase error I& will be different from these two values [5]. 
In fractional PLL this value is shifted by fractional 
averaging and modulated by the beat note. Then the phase 
error can be expressed: 

@tt> = +oB + @B @) (1) 

where QOs and $s(t) are defined such that &,s, @a(t)< 0 V/t 
and &,a Z @s(t) Vt. A negative phase error has been 
assumed. The analysis for positive error can be carried out 
in similar way. The time variation $a(t) is responsible for 
the beat-note modulation. The width of each pulse at the 
PD output is determined by the phase-error value at its 
falling edge. 
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In Fig. la, the input signals to the phase detector v,(t) 
and v,‘(t) have been represented, respectively 
corresponding to the reference signal and the output of the 
frequency divider, together with the PD output pulse, all in 
normalized units to enable the comparison. As shown in 
Fig. la, the pulse width at each reference period is l/f,- 
At(n), with: 

The second term of (2) repeats its value each M reference 
cycles and is thus responsible of the beat note (see Fig. 
lb). In other works [l], At(n) has been calculated 
neglecting $Oa. As gathered from (2), this gives rise to an 
error in the estimation of At(n). Taking (2) into account, 
the expression in [I], relating the beat note ~s[n/~-At(n)] 
to the accumulator content s(n), is modified to: 

=-2r*-271 K-Mxid”)& (3) 
(NF+ K) (NF+K) fr 

where x,.,(n) is equal to 1 for instantaneous division order 
N+l and equal to zero for instantaneous order N. As 
shown in (3), the beat note decreases with N. 

(b) 
Fig. 1 Phase error for K/F=1/5. (a) Voltage input signals to the 
PD and PD output current pulse. All signals are normalized for 
the comparison. (b) Phase error-pulse sequence over two beat- 

note periods (2F). 

The error current is responsible for a charge injection, 
given by the integral of the current error pulses [l]. The 
modulation of this area determines the amplitude of the 
beat note frequency in the output spectrum. The beat note 
is generally compensated through the injection, into the 
loop filter, of a pulsed current L(t) of constant pulse width 
and variable height, having the same area modulation as 
(3) and period F/f,. The signal at the output of the 
prescaler generally employed in the implementation of the 
frequency divider can be used in the generation of the 
compensation signal. For a prescaler of order P, the width 

of the compensation-current pulses will be: fvcJP, with 
fvco being the frequency of the voltage-controlled 
oscillator (VCO). 

In practical realizations of the compensation signal, the 
amplitude of i,(t) is empirically fitted, this meaning a 
multiplication of i,(t) by an adjustable factor q, i.e., 
i,‘(t)+,(t). Actually, the optimum phase-error 
compensation would be the one provided by a current 
signal having equal amplitude and opposite phase at the 
beat note frequency fJF. Taking this into account, the 
influence of both the pulse amplitude and width has been 
studied here. The constant pulse width is written 
-P~fvco, with y, a variable parameter. 

The nonlinear simulation carried out here enables the 
prediction of the beat note attenuation. Fig. 2 shows the 
improvement in the beat-note attenuation when the 
compensation current is calculated from the phase-error 
model (3), compared to the model neglecting QooB. The 
improvement due to the fitting of the pulse width only has 
an appreciable influence for relatively low division order 
N. The maximum attenuation of the beat note is obtained 
for 11 close to unity 11~1, but not exactly unity, in 
agreement with the experimental observations. 

Fig. 2 Attenuation of beat-note frequency. The parameter q 
indicates variations of the pulse amplitude with respect to ideal 
area compensation (q=l) and y, variations in the pulse width 
with respect to a=PiTvco (y-l). 

Fig, 3a and Fig. 3b respectively show the synthesizer 
experimental spectrum before and after compensation, for 
‘y-1. The spectrum has been measured at the output of the 
VCO. Fig. 3c shows the spectrum simulation, before and 
after compensation, in the same conditions. Note that, 
since F=5, there are three other spurious tones kf,/5, with 
k=2,3,4, between the beat note and the reference line at f,. 

B Parameter influence on the behavior of the fractional 
synthesizer 
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a) Beat note 
The influence of the loop-filter bandwidth @ on the 

beat note value has been analyzed. It is a typical second- 
order RC filter, whose response can be modeled with the 
equation: F(s)=(s+T,)/[(s+Q)(s+E)]. One of the filter poles, 
is ideally located at the origin &=O. However, parasitics irk 
the capacitors and the finite output impedance of the 
charge pump give rise to a slight shift. Here the analysisi 
parameter is the filter bandwidth Q, with a relatively low 
division order N (for an easier visual appreciation of the 
qualitative effects). The analysis is carried out through the 
use of the Poincark map [7]. This map is obtained by 
sampling the steady-state solution at integer multiples of 
the reference period T,. The resulting discrete points are 
represented versus the parameter Q (Fig. 4). 
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Fig. 3 Compensation of beat-note frequency. (a) Experimental, 
before compensation. (b) Experimental, after compensation. (c) 
Simulation of both cases. Other spurious lines and the reference 
frequency f, are also shown. 

In fractional synthesizers, for phase-locked operation, 
the sampling provides F different points. Out of lock, the 
sampling provides an ensemble of points, corresponding to 
either quasi-periodic or chaotic behavior. In the G 
interval of phase-locked behavior, the width of the vertical 
line, defined by the F points, enables a visual estimation of 
the beat note. The beat note is smaller for smaller 
amplitude of the Poincare section (given by the F points). 

This is shown in Fig. 4, where the two cases of 
compensated and uncompensated beat note have been 
considered. In each case, five discrete points are obtained 
in the interval of phase-locked behavior, due to the 
fractional value F=5. For compensated beat note, the five 
points are closer together. Due to the natural decrease of 
the beat note with the division order N (see (3)), a 
relatively low N has been considered for this analysis is 
order, to enable a better appreciation of the influence of 
bandwidth %+ The beat-note amplitude decreases with q 
in case of an uncompensated signal. Actually, the larger 
bandwidth implies a less selective filter and thus less 
attenuation of the beat note. For an uncompensated signal, 
the beat-note amplitude keeps approximately constant. As 
shown in Fig. 4, for the N value considered in thk 
simulation, the loop unlocks, for very narrow bandwidth. 
This is due, as will be shown in the next paragraph, to the 
onset of chaotic solutions. The value of the filter 
bandwidth o&OKHz, for the onset of chaos is 
approximately the same in the two cases of compensated 
and uncompensated signal. 

Another parameter with high influence on the beat note 
magnitude is the division order N. The beat note increases 
for small division order N. This can be understood due to 
the higher relative influence of the division-order 
modulation for smaller N values. The next analysis of 
phase-locked ranges versus N will illustrate this point. 
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Fig. 4 PoincarC map. Influence of the filter bandwidth w, on the 
beat-note amplitude. 

b) Phase-locked ranges 
In preliminary simulations of the fractional synthesizer 
used here, it has been found that its bold-in and lock-in 
ranges are beyond the maximum operation frequency of 
the synthesizer. Instead, unlocked behavior has been 
experimentally observed (see Fig. 5) inside the region for 
which phase-locked operation region is usually expected 
(output frequency close to that of the free-running 
oscillator and high loop gain). These unlocked solutions 
are, in fact, chaotic solutions. The fractional division 
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probably makes the observation of these solutions more 
likely, due to the introduction of the beat note frequency. 
The beat note is an F-order subharmonic of the reference 
frequency, which makes the nonlinear dynamics of the 

loop more complex. The phase-locked ranges are easily 
determined through the use of the Poincare map. This has 
been done in Fig. 6, where the two cases of a fractiona 
loop with and without compensation can be compared. As 
can be seen, there is an increase of the beat-note amplitude 
as N decreases. Again, the onset of chaos takes place for 
approximately the same N value in the two cases of 
compensated and uncompensated beat note. 
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Fig. 5. Experimental unlocked spectrum observed for the loop 
parameters: N=2043, f,=l MHz, WF=2/5. It corresponds to a 

chaotic solution. 
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Fig. 6 Poincare map versus the division order N 

c) Settling time 
The settling time when switching the channel from 
fvco=(N+l/F)fr to fvco=(N+4/F)f, has also been analyzed 
(Fig. 7), obtaining the value r,lOO@. The simulation has 
been repeated for other value of fractional division F=8 

. . . . 
and smular frequency variation Afvco, obtaining a similar 
settling time. This time depends on the loop bandwidth 
and the absolute value of the frequency increment. 

III. CONCLUSIONS 

In this work the nonlinear analysis of a fractional phase- 
locked loop has been presented. The analysis enables the 

prediction of the beat-note amplitude in the output 
spectrum. A study of the optimum beat-note compensation 
signal has also been carried out and compared with 
standard compensation techniques. The Poincare map is 

proposed as a simple technique to determine the influence 
on the beat note magnitude of different loop parameters. 
Unlocked solutions, commonly observed in the experiment 
for loop output frequencies close to that of the free- 
running oscillator, have been analyzed. The phase-locked 
ranges, delimited by these solutions, have been 
determined. The synthesizer has been manufactured and 
experimentally characterized, obtaining very good 
agreement with the simulations. 

Fig.7 Simulation of settling time for channel switch from 
K=l to K=4. 
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