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Abstract — In this work, the nonlinear analysis of a

~ fractional phase-locked loop with 2.4 GHz output frequency
is presented. The nonlinear simulation uses a realistic
description for the phase-frequency detector and the loop
filter. The phase-error compensation for beat-note spurious
reduction is analyzed, predicting the attenuation values for
practical and theoretically improved compensation signals.
The influence of different loop parameters on the beat note
spurious is also studied, through the application of the
Poincaré map. This technique has also enabled the
determination of the phase-locked ranges, delimited by
chaotic phenomena. The phase-locked loop has been
manufactured and experimentally characterized.

1. INTRODUCTION

In a fractional synthesizer [1-4], the output frequency is
a fractional multiple of the reference frequency, i. e.,
fyco=f,(N+K/F), with K<F. The narrow channel spacing is
given by Af=f/F, so the reference frequency can be F
times higher than in a conventional integer synthesizer.
This enables a wider loop-filter bandwidth and, thus, fast
switching times. The decrease of the division ratio also
reduces the output phase-noise. The overflow of an
accumulator [1-3] is used to periodically vary the division
order between N and N+1. This instantaneous modulation
of the division ratio creates spurious tones at f/F (beat
note) in the output spectrum. The beat note can, however,
be corrected through phase-interpolation, using a digital-
to-analog converter. The contents of the accumulator are
used to create a compensation signal, which is summed
into the loop filter. Other approaches for beat note
reduction include the use of sigma-delta modulators [4].

In the bibliography, several works have been devoted to
the study and design of fractional synthesizers, using an
phase interpolation. In [1] analytical expressions are
obtained for the phase error and for the spurious tones,
after introduction of the compensation signal. In [2], a
nonlinear simulation is presented, using normalized units.
The aim here is to carry out a realistic analysis of the
synthesizer global behavior, with accurate models of the
digital phase detector and the loop filter. The optimum
compensation signal will be mathematically determined
and compared with existing techniques. The influence of
different loop parameters on the spurious content, phase-

locked ranges and settling times (when the channel is
switched) will be studied.

II. NONLINEAR ANALYSIS OF THE FRACTIONAL
PHASE-LOCKED LOOP

The fractional PLL analyzed here has 2.4 GHz output
frequency. The frequency range of the voltage-controlled
oscillator (VCO) is 2-3 GHz. For the nonlinear simulation,
the truth table of the digital phase detector (PD) is taken
into account. For the analysis, the fractional modulus F=5
will be considered.

A Phase error and compensation current

For a fractional PLL with division ratio N+K/F, there are
K divisions by N+1 and F-K divisions by N in F cycles of
the reference signal. The division order can be modulated
using the output of an F-modulus accumulator. The
accumulator changes its value a/(n) (with n = 1 to F) at
each cycle of the reference T,=1/f,, returning to its initial
value after F cycles, ie., with the period F/f. The
instantaneous variation of the division order (N or N+1)
gives rise, at the phase-detector input, to a phase error
¢(n), whose value depends on the accumulator content
a,(n). )

When the division order is not modulated (integer divider),
the phase-locked solution of the PLL is given by a
constant phase error ¢, at the phase-detector input. For a
filter pole located at the origin, this phase error will either
be ¢, = 0 or ¢, = 7, the actual value depending on the loop
parameters. If no filter poles are located at the origin, the
phase error ¢, will be different from these two values {5].
In fractional PLL this value is shifted by fractional
averaging and modulated by the beat note. Then the phase
error can be expressed:

0(6) = 0B + 05 () ()
where ¢,5 and ¢p(t) are defined such that ¢, Ps(t)< 0 Vt
and ¢,5 2 ¢p(t) Vt. A negative phase error has been
assumed. The analysis for positive error can be carried out
in similar way. The time variation ¢p(t) is responsible for
the beat-note modulation. The width of each pulse at the
PD output is determined by the phase-error value at its
falling edge.
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In Fig. la, the input signals to the phase detector v,(t)
and v,’(t) have been represented, respectively
corresponding to the reference signal and the output of the
frequency divider, together with the PD output pulse, all in
normalized units to enable the comparison. As shown in
Fig. la, the pulse width at each reference period is 1/fi-
At(n), with:

E—At(n)} %(B—At(rﬂ
At(“)="¢(fr27-cf =y frmf @

The second term of (2) repeats its value each M reference
cycles and is thus responsible of the beat note (see Fig,
1b). In other works [1], At(n) has been calculated
neglecting ¢,p. As gathered from (2), this gives rise to an
error in the estimation of At(n). Taking (2) into account,
the expression in [1], relating the beat note ¢p[n/f-At(n)]
to the accumulator content a (n), is modified to: :

K - M xn(n) op 3
(NF+K) f,

n_ o 2
%[fr At(n)] 2n(NF+K) 2n

where xy(n) is equal to 1 for instantaneous division order
N+1 and equal to zero for instantaneous order N. As
shown in (3), the beat note decreases with N.
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Fig. 1 Phase error for K/F=1/5. (a) Voltage input signals to the
PD and PD output current pulse. All signals are normalized for
the comparison. (b) Phase error-pulse sequence over two beat-
note periods (2F).

The error current is responsible for a charge injection,
given by the integral of the current error pulses [1]. The
modulation of this area determines the amplitude of the
beat note frequency in the output spectrum. The beat note
is generally compensated through the injection, into the
loop filter, of a pulsed current i (t) of constant pulse width
and variable height, having the same area modulation as
(3) and period F/f,. The signal at the output of the
prescaler generally employed in the implementation of the
frequency divider can be used in the generation of the
compensation signal. For a prescaler of order P, the width

of the compensation-current pulses will be: fyco/P, with
fyvco being the frequency of the voltage-controlled
oscillator (VCO).

In practical realizations of the compensation signal, the
amplitude of i(t) is empirically fitted, this meaning a
multiplication of i(t) by an adjustable factor 7, i..,
i'()=nit). Actually, the optimum phase-error
compensation would be the one provided by a current
signal having equal amplitude and opposite phase at the
beat note frequency f/F. Taking this into account, the
influence of both the pulse amplitude and width has been
studied here. The constant pulse width is written
T=YP/fyco, with v, a variable parameter.

The nonlinear simulation carried out here enables the
prediction of the beat note attenuation. Fig. 2 shows the
improvement in the beat-note attenuation when the
compensation current is calculated from the phase-error
model (3), compared to the model neglecting ¢os. The
improvement due to the fitting of the pulse width only has
an appreciable influence for relatively low division order
N. The maximum attenuation of the beat note is obtained
for m close to unity mzl, but not exactly umity, in
agreement with the experimental observations.
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Fig. 2 Attenuation of beat-note frequency. The parameter m
indicates variations of the pulse amplitude with respect to ideal
area compensation (n=1) and v, variations in the pulse width
with respect to ©=P/Tyco (y=1).

Fig. 3a and Fig. 3b respectively show the synthesizer
experimental spectrum before and after compensation, for
¥=1. The spectrum has been measured at the output of the
VCO. Fig. 3c shows the spectrum simulation, before and
after compensation, in the same conditions. Note that,
since F=5, there are three other spurious tones kf,/S, with
k=2,3,4, between the beat note and the reference line at f..

B Parameter influence on the behavior of the fractional
synthesizer
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a) Beatnote

The influence of the loop-filter bandwidth ws on the
beat note value has been analyzed. It is a typical second-
order RC filter, whose response can be modeled with the
equation: F(s)=(s+1,)/((s+1,)(s+€)]. One of the filter poles
is ideally located at the origin €=0. However, parasitics in
the capacitors and the finite output impedance of the
charge pump give rise to a slight shift. Here the analysis
parameter is the filter bandwidth cg, with a relatively low
division order N (for an easier visual appreciation of the
qualitative effects). The analysis is carried out through the
use of the Poincaré map [7]. This map is obtained by
sampling the steady-state solution at integer multiples of
the reference period T, The resulting discrete points are
represented versus the parameter g (Fig. 4).
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Fig. 3 Compensation of beat-note frequency. (a) Experimental,
before compensation. (b) Experimental, after compensation. (c)
Simulation of both cases. Other spurious lines and the reference
frequency f; are also shown.

In fractional synthesizers, for phase-locked operation,
the sampling provides F different points. Out of lock, the
sampling provides an ensemble of points, corresponding to
either quasi-periodic or chaotic behavior. In the wp
interva) of phase-locked behavior, the width of the vertical
line, defined by the F points, enables a visual estimation of
the beat note. The beat note is smaller for smaller
amplitude of the Poincaré section (given by the F points).

This is shown in Fig. 4, where the two cases of
compensated and uncompensated beat note have been
considered. In each case, five discrete points are obtained
in the interval of phase-locked behavior, due to the
fractional value F=5. For compensated beat note, the five
points are closer together. Due to the natural decrease of
the beat note with the division order N (see (3)), a
relatively low N has been considered for this analysis is
order, to enable a better appreciation of the influence of
bandwidth wy. The beat-note amplitude decreases with wy
in case of an uncompensated signal. Actually, the larger
bandwidth implies a less selective filter and thus less
attenuation of the beat note. For an uncompensated signal,
the beat-note amplitude keeps approximately constant. As
shown in Fig. 4, for the N value considered in the
simulation, the loop unlocks, for very narrow bandwidth.
This is due, as will be shown in the next paragraph, to the
onset of chaotic solutions. The value of the filter
bandwidth p=80KHz, for the onset of chaos is
approximately the same in the two cases of compensated
and uncompensated signal. ‘

Another parameter with high influence on the beat note
magnitude is the division order N. The beat note increases
for small division order N. This can be understood due to
the higher relative influence of the division-order
modulation for smaller N values. The next analysis of
phase-locked ranges versus N will illustrate this point.
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Fig. 4 Poincaré map. Influence of the filter bandwidth wg on the
beat-note amplitude.

b) Phase-locked ranges

In preliminary simulations of the fractional synthesizer
used here, it has been found that its hold-in and lock-in
ranges are beyond the maximum operation frequency of
the synthesizer. Instead, unlocked behavior has been
experimentally observed (see Fig. 5) inside the region for
which phase-locked operation region is usually expected
(output frequency close to that of the free-running
oscillator and high loop gain). These unlocked solutions
are, in fact, chaotic solutions. The fractional division
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_ probably makes the observation of these solutions more
likely, due to the introduction of the beat note frequency.
The beat note is an F-order subharmonic of the reference
frequency, which makes the nonlinear dynamics of the
loop more complex. The phase-locked ranges are easily
determined through the use of the Poincaré map. This has
been done in Fig. 6, where the two cases of a fractional
loop with and without compensation can be compared. As
can be seen, there is an increase of the beat-note amplitude
as N decreases. Again, the onset of chaos takes place for
approximately the same N value in the two cases of
compensated and uncompensated beat note.
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Fig. 5. Experimental unlocked spectrum observed for the loop
parameters: N=2043, f=1 MHz, K/F=2/5. It corresponds to a
. chaotic solution.
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Fig. 6 Poincaré map versus the division order N

c) Settling time

The settling time when switching the channel from
fuco=(N+1/F)f; to f'yco=(N+4/F)f, has also been analyzed
(Fig. 7), obtaining the value 1=100uS. The simulation has
been repeated for other value of fractional division F=8
and similar frequency variation Afyco, obtaining a similar
settling time. This time depends on the loop bandwidth
and the absolute value of the frequency increment.

III. CONCLUSIONS

In this work the nonlinear analysis of a fractional phase-
locked loop has been presented. The analysis enables the

prediction of the beat-note amplitude in the output
spectrum. A study of the optimum beat-note compensation
signal has also been carried out and compared with
standard compensation techniques. The Poincaré map is
proposed as a simple technique to determine the influence
on the beat note magnitude of different loop parameters.
Unlocked solutions, commonly observed in the experiment
for loop output frequencies close to that of the free-
running oscillator, have been analyzed. The phase-locked
ranges, delimited by these solutions, have been
determined. The synthesizer has been manufactured and
experimentally characterized, obtaining very good
agreement with the simulations.
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Fig.7 Simulation of settling time for channel switch from
K=1to K=4.
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